

Key: Major Clusters; Supporting Clusters; Additional Clusters

G-MG 1-3: Modeling with Geometry: Apply geometric concepts in modeling situations

June 24, 2015 Draft

Geometry – UNIT 2

Similarity, Right Triangles, and Trigonometry

Critical Area: Students investigate triangles and decide when they are similar. A more precise mathematical definition of similarity is given; the new definition taken for two objects being similar is that there is a sequence of similarity transformations that maps one exactly onto the other. Students explore the consequences of two triangles being similar: that they have congruent angles and that their side lengths are in the same proportion. Students prove the Pythagorean Theorem using triangle similarity.

CLUSTERS	COMMON CORE STATE STANDARDS
Understand similarity in terms of similarity transformations	 Geometry - Similarity, Right Triangles, and Trigonometry G-SRT.1. Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. G-SRT.2. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. G-SRT.3. Use the properties of similarity transformations to establish the Angle-Angle (AA) criterion for two triangles to be similar.
Prove theorems involving similarity	 Geometry - Similarity, Right Triangles, and Trigonometry G-SRT.4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity. G-SRT.5. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures
Apply geometric concepts in modeling situations	G-MG 1-3: Modeling with Geometry: Apply geometric concepts in modeling situations
MATHEMATICAL PRACTICES	
 Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Use appropriate tools strategically. Attend to precision. 	Emphasize Mathematical Practices 1, 2, 3, 4, 4, 5, and 6 in this unit.

7.	Look for and make use of structure.
8.	Look for and express regularity in repeated
	reasoning.

	ENDURING UNDERSTANDINGS		ESSENTIAL QUESTIONS	KEY VOCABU	JLARY
•	Sequence of similarity transformation of two objects	•	What is the difference between similarity and	• congruency	
	that maps one exactly onto the other is defined.		congruence?	 corresponding 	
				• criterion	
•	Similarity of two objects using their given ratio by a	•	How can you show that it is not possible to prove	• derive	
	scale factor is proved; such as: using the dilation of		similarity by showing three angles in proportion	• dilation	
	a line segment in ratio given by the scale factor.		to one another?	• dilation of scale factor	
				• parallel lines	
•	Similar triangles have corresponding pairs of angles	٠	How do you construct a viable argument for	 proportionality 	
	and proportional pairs of sides (AA, SAS, SSS).		congruency and/or similarity of two triangles?	• reflection	
	, , , , , , , , , , , , , , , , ,			• rigid motion	
•	Prove Theorems about triangles; such as "a line	٠	How do you construct a viable argument for the	• rotation	
	parallel to one side of a triangle divides the other		similarity of geometric figures?	• scale factor	
	two proportionately and conversely."			• sequence	
		•	Are all congruent triangles similar and is the	• similar	
•	Triangle similarity is used to prove the Pythagorean		converse true also?	• similarity transformatio	on
	Theorem.			• transversal	
				• triangle relationships	
•	Congruence and similarity criteria for triangles are				
	used to solve problems and prove relationships of				
	geometric figures.				

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
LAUSD Adopted Textbooks and Programs	• Provide students the opportunities to experiment with	Formative Assessment
Big Ideas Learning - Houghton Mifflin	dilations and determine how they affect planar objects.	
Harcourt, 2015: Big Ideas Geometry	Have them explore the properties of dilations in more	
<u>College Preparatory Mathematics</u> , 2013: Core	detail and develop an understanding of the notion of	
Connections, Geometry	scale factor (G-SRT.1). Students first make sense of the	
<u>The College Board, 2014:Springboard</u> <u>Conservative</u>	definition of a dilation of scale factor $k>0$ with center	
Geometry	<i>P</i> as the transformation that moves a point <i>A</i> along the	
Mathematics Assessment Project (MARS Tasks)	ray \overrightarrow{PA} to a new point A', so that $ \overrightarrow{PA} = k \cdot \overrightarrow{PA} $	
Hopwell Geometry – G.SRT.5	• For example, students apply the dilation of scale	
http://map.mathshell.org/materials/download.ph	factor 2.5 with center P to the points A, B, and C	

LAUSD Secondary Mathematics

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
<u>p?fileid=499</u>	illustrated using a ruler. Once they've done so,	LAUSD Assessments
	they consider the two triangles $\triangle ABC$ and $\triangle A' B'C'$.	The district will be using the SMARTER
Inscribing and Circumscribing Right Triangles –	What they discover is that the lengths of the	Balanced Interim Assessments. Teachers would
G.SRT:	corresponding sides of the triangles have the same ratio	use the Interim Assessment Blocks (IAB) to
http://map.mathshell.org/materials/lessons.php?task	as dictated by the scale factor. Students learn that	monitor the progress of students. Each IAB can
id=403&subpage=problem	parallel lines are taken to parallel lines by dilations;	be given twice to show growth over time.
	thus corresponding segments of $\triangle ABC$ and $\triangle A'B'C'$	
Illustrative Mathematics	are parallel. After students have proved results about	
Similar Triangles : G-SRT.3	parallel lines intersected by a transversal, they can	State Assessments
http://www.illustrativemathematics.org/illustrations	deduce that the angles of the triangles are congruent.	
<u>/1422</u>		California will be administering the
Pythagorean Theorem : G-SRT.4	A	SMARTER Balance Assessment as the end of
http://www.illustrativemathematics.org/illustrations		course for grades 3-8 and 11. There is no
/1568		The 11th grade assessment will include items
Joining two midpoints of sides of a triangle : G-		from Algebra 1. Geometry, and Algebra 2
SRT.4		standards. For examples, visit the
http://www.illustrativemathematics.org/illustrations	P	SMARTER Balance Assessment at:
<u>/1095</u>	Through experimentation, they see that the congruence	http://www.smarterbalanced.org/
	of corresponding angles is a necessary and sufficient	Sample Smarter Balanced Items:
	condition for the triangles to be similar, leading to the	<u>nttp://sampleitems.smarterbalanced.org/itempr</u>
	AA criterion for triangle similarity. (G.SRT.3.)	eview/sbac/index.ntm
	For a simple investigation, students can observe how	
	the distance at which a projector is placed from a	
	screen affects the size of the image on the screen.	
	(MP.4)	
	• Have students use geometric shapes, their measures,	
	and their properties to describe objects including two-	
	and three-dimensional shapes.	

LANGUAGE GOALS for low achieving, high achieving, students with disabilities and English Language Learners

- Students will be able to articulate orally and in writing the differences between similarity and congruence.
- Students will be able to affirm the veracity of mathematical statements.
- Students will be able to articulate the process of constructing viable arguments.
- Students will be able to describe in writing the definition of similarity in terms of similarity transformations and decide if they are similar.
- Students will explain in writing and orally similarity transformations and the meaning of similarity for triangles as the equality of all corresponding pairs of angles.

PERFORMANCE TASKS

Illustrative Mathematics

Dilating a Line : G-SRT.1 <u>http://www.illustrativemathematics.org/illustrations/602</u> Are they Similar ?: G-SRT.2 <u>http://www.illustrativemathematics.org/illustrations/603</u> Folding a Square into Thirds : G-SRT.5 <u>http://www.illustrativemathematics.org/illustrations/1572</u>

LAUSD Concept Lessons - <u>http://math.lausd.net</u>

Squaring Triangles

Mathematics Assessment Project (MARS Tasks):

Geometry Problems: Circles and Triangles – G-SRT <u>http://map.mathshell.org/materials/lessons.php?taskid=222#task222</u> **Inscribing and Circumscribing Right Triangles -** <u>http://map.mathshell.org/materials/lessons.php?taskid=403&subpage=problem</u> **Modeling: Rolling Cups-** <u>http://map.mathshell.org/materials/lessons.php?taskid=428&subpage=problem</u> Solving Geometry Problems: Floodlights – G-SRT.5, G-MG.1-3 <u>http://map.mathshell.org/materials/lessons.php?taskid=429&subpage=problem</u> Analyzing Congruence Proofs – G-CO.6-8 <u>http://map.mathshell.org/materials/lessons.php?taskid=452&subpage=concept</u> **Calculating Volumes of Compound Objects – G-MD** <u>http://map.mathshell.org/materials/lessons.php?taskid=216&subpage=concept</u> Proofs of the Pythagorean Theorem <u>http://map.mathshell.org/materials/lessons.php?taskid=419&subpage=concept</u>

DIFFERENTIATION			
UDL/FRONT LOADING	ACCELERATION	INTERVENTION	
Prerequisites:		Multiple entry points for problems should be planned	
 •Assessment tasks can be given a day prior in class or as homework to find out the difficulties students have prior to the lessons. Clarify the objectives in student friendly language and communicate the learning expectations by the end of the concept development tasks to lower the 	 Advanced students should have access to bank of more challenging problems for extension Gifted and advanced student can use alternate projects, to meet their unique needs. Use of technology and software to enhance student learning and explore further. 	and taught in each lesson. When the lesson is reviewed or retaught, use a different entry point or a different method.Illicit more information about students' misconceptions or misunderstandings before choosing	

students' anxiety.	or recommending strategies aligned with math goals
	and students' abilities.
	Use higher order questions and effective questioning
	techniques to enhance learning; analyze skills and
	evaluate students' understanding.
	To increase active participation, students should be
	expected to work collaboratively to promote authentic
	conversation, increase opportunities for asking
	questions, and peers support.
	Use visual tools, academic language, graphic
	organizers, manipulatives, and engaging and real
	world examples.
	Make clear connections to prior grade concepts
	See "Common Issues" of each Mars Tasks

References:

- 1. National Governors Association Center for Best Practices, Council of Chief State School Officers. (2010). *Common Core State Standards (Mathematics)*. Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers.
- 2. McCallum, W., Zimba, J., Daro, P. (2011, December 26 Draft). *Progressions for the Common Core State Standards in Mathematics*. Cathy Kessel (Ed.). Retrieved from http://ime.math.arizona.edu/progressions/#committee.
- 3. Engage NY. (2012). New York Common Core Mathematics Curriculum. Retrieved from <u>http://engageny.org/sites/default/files/resource/attachments/a-story-of-ratios-a-curriculum-overview-for-grades-6-8.pdf.</u>
- 4. Mathematics Assessment Resource Service, University of Nottingham. (2007 2012). Mathematics Assessment Project. Retrieved from http://map.mathshell.org/materials/index.php.
- 5. Smarter Balanced Assessment Consortium. (2012). Smarter Balanced Assessments. Retrieved from http://www.smarterbalanced.org/.
- 6. Partnership for Assessment of Readiness for College and Career. (2012). PARCC Assessments. Retrieved from <u>http://www.parcconline.org/parcc-assessment</u>.
- 7. California Department of Education. (2013). Draft Mathematics Framework Chapters. Retrieved from http://www.cde.ca.gov/be/cc/cd/draftmathfwchapters.asp.
- 8. National Council of Teachers of Mathematics (NCTM) Illuminations. (2013). Retrieved from http://illuminations.nctm.org/Weblinks.aspx.
- 9. The University of Arizona. (2011-12). Progressions Documents for the Common Core Math Standards. Retrieved from http://ime.math.arizona.edu/progressions.